|
Product model
|
JFTSM-QSFP28-100-PS4-2-MPO8/12
|
Manufacturer brand
|
JFOPT
|
|
Package type
|
QSFP28
|
Optical connector
|
MPO 8C/12C
|
|
Max data rate
|
100Gbps
|
Channel data rate
|
26Gbps
|
|
Effective transmission distance
|
2km
|
||
|
Wavelength
|
1310nm
|
Operating voltage
|
3.3V
|
|
Fiber type
|
SMF
|
Core size
|
9/125
|
|
Transmitter type
|
DFB
|
Receiver type
|
PIN
|
|
TX power
|
-9.4~2.0dBm
|
Receiver sensitivity
|
-11.35dBm
|
|
Digital optical monitoring(DDM)
|
YES
|
Receiver overload
|
2.5dBm
|
|
Power consumption
|
<3.5W
|
Protocols
|
100G Ethernet
Proprietary high speed Interconnections Data center |
|
Operating temperature(Commercial)
|
0℃~+70℃
|
Storage temperature(Commercial)
|
-40℃~+85℃
|
JFOPT continues to invest in optical transceiver production, covering a full range of optical transceiver such as 1*9, SFP, 10G, 25G, 100G, 200G, 400G, 800G GPON/EPON/XG/XGSPON OLT transceiver. At the same time, our company provides TOSA, ROSA, BOSA semi-finished device solutions for the downstream peer. JFOPT's production line has a daily production capacity of 10,000 optical transceivers and 20,000 optical devices. In addition, JFOPT's optical transceiver have industry-leading high temperature resistance and anti-interference capability, and are widely used in computing centers, operators, traffic security, power facilities and other industries.
The JFOPT QSFP28 100G PSM4 2km MPO 8/12 is a high-performance, four-channel pluggable parallel fiber-optic transceiver designed for 100G Ethernet applications. This full-duplex module features four independent transmit and receive channels, each supporting 26Gbps, delivering a total aggregate data rate of 104Gbps over distances of up to 2km on single-mode fiber.Equipped with a 1310nm DFB laser array, the transceiver connects via an MPO/MTP optical fiber ribbon cable. As a parallel transceiver, the QSFP28 PSM4 enhances port density and reduces total system costs, making it an efficient solution for high-speed networking environments.


| Four-channelfull-duplex transceiver modules | Transmission data rate up to 26Gbit/s per channel | ||||||||
| Up to 2km transmission of single mode fiber | Low power consumption<3.5W | ||||||||
| Operating case temperature:0 to 70℃ | 3.3V power supply voltage | ||||||||
| Hot pluggable QSFP28 form factor | Built-in digital diagnostic function | ||||||||
| Single MPO connector receptacle |
| 100G ethernet | Proprietary high speed interconnections | |||||||
| Datacenter | ||||||||

| Parameter | Symbol | Min. | Max. | Unit | |||||
| Power supply voltage | VCC | -0.3 | +3.6 | V | |||||
| Storage temperature | TC | -40 | +85 | ℃ | |||||
| Relative humidity | RH | 5 | 85 | % | |||||
| Parameter | Symbol | Min | Typical | Max | Unit | ||||
| Power supply voltage | VCC | 3.135 | 3.30 | 3.465 | V | ||||
| Operating case temperature | Tca | 0 | - | 70 | ℃ | ||||
| Parameter | Symbol | Min | Typical | Max | Unit | Ref | |||
Transmitter |
|||||||||
| Input differential impedance | Rin | - | 100 | - | Ω | 1 | |||
| Differential input voltage amplitude | △Vin | 300 | - | 1100 | mVp-p | - | |||
| Input logic level high | VIH | 2.0 | - | VCC | V | - | |||
| Input logic level low | VIL | 0 | - | 0.8 | V | - | |||
Receiver |
|||||||||
| Output differential impedance | Rout | - | 100 | - | Ω | 1 | |||
| Differential output swing,per lane | Vout | 300 | - | 800 | mVp-p | 2 | |||
| Output logic level high | VOH | VCC-0.5 | - | VCC | V | - | |||
| Output logic level low | VOL | 0 | - | 0.4 | V | - | |||
Notes: [1]AC coupled. [2]Into 100 ohm differential termination. |
|||||||||
| Parameter | Symbol | Min | Typical | Max | Unit | - | |||
| Center wavelength | λC | 1295 | - | 1325 | nm | 1 | |||
| RMS spectral width | λrms | - | - | 3.5 | nm | 1 | |||
| Average launch power, each lane | PAVG | -9.4 | - | 2.0 | dBm | - | |||
| Optical modulation amplitude(OMA) | POMA | -4 | - | 2.2 | dBm | 1 | |||
| Difference in launch power between any two lanes | Ptx,diff | - | - | 5.0 | dB | - | |||
| Transmitter and dispersion penalty(TDP),each lane(max) | TDP | - | - | 2.9 | dBm | 1 | |||
| Rise/Fall time | Tr/Tf | - | - | 30 | ps | - | |||
| Extinction ratio | ER | 3.5 | - | - | dB | - | |||
| Relative intensity noise | Rin | - | - | -128 | dB/Hz | - | |||
| Optical return loss tolerance | TOL | - | - | 20 | dB | - | |||
| Transmitter reflectance | RT | - | - | -12 | dB | - | |||
| Transmitter eye mask margin | EMM | 10 | - | - | % | 2 | |||
| Transmitter eye mask definition{X1,X2, X3,Y1,Y2,Y3} | - | [0.31,0.4,0.45,0.34,0.38,0.4} | - | - | |||||
| Average launch power OFF transmitter,each lane | Poff | -30 | dBm | - | |||||
| Parameter | Symbol | Min. | Typical | Max. | Unit | - | |||
| Center wavelength | λC | 1295 | - | 1325 | nm | - | |||
| Damage threshold | THd | +3 | - | - | dBm | - | |||
| Overload,each lane | OVL | +2.5 | - | - | dBm | - | |||
| Receiver sensitivity in OMA,each Lane | SEN | - | - | -11.35 | dBm | - | |||
| Difference in receive power between any two lanes(OMA) | Prx,diff | - | - | 5 | dB | - | |||
| Signal loss assert threshold | LOSA | -30 | - | - | dBm | - | |||
| Signal loss de-assert threshold | LOSD | - | - | -12 | dBm | - | |||
| LOS hysteresis | LOSH | 0.5 | - | - | dB | - | |||
| Optical return Loss | ORL | - | - | -12 | dBm | - | |||
Notes: [1]Transmitter wavelength,RMS spectral width and power need to meet the OMAm inus TDP specs to guarantee link performance. [2]The eyediagram is tested with 1000 waveform. |
|||||||||

| Pin | Symbol | Name/Description | |||||||
| 1 | GND | Ground | |||||||
| 2 | Tx2n | Transmitter inverted data input | |||||||
| 3 | Tx2p | Transmitter non-inverted data input | |||||||
| 4 | GND | Ground | |||||||
| 5 | Tx4n | Transmitter inverted data input | |||||||
| 6 | Tx4p | Transmitter non-inverted data input | |||||||
| 7 | GND | Ground | |||||||
| 8 | ModSelL | Module select | |||||||
| 9 | ResetL | Module reset | |||||||
| 10 | VCCRx | +3.3V power supply receiver | |||||||
| 11 | SCL | 2-wire serial interface clock | |||||||
| 12 | SDA | 2-wire serial interface data | |||||||
| 13 | GND | Ground | |||||||
| 14 | Rx3p | Receiver non-inverted data output | |||||||
| 15 | Rx3n | Receiver inverted data output | |||||||
| 16 | GND | Ground | |||||||
| 17 | Rxlp | Receiver non-inverted data output | |||||||
| 18 | Rx1n | Receiver inverted data output | |||||||
| 19 | GND | Ground | |||||||
| 20 | GND | Ground | |||||||
| 21 | Rx2n | Receiver inverted data output | |||||||
| 22 | Rx2p | Receiver non-inverted data output | |||||||
| 23 | GND | Ground | |||||||
| 24 | Rx4n | Receiver inverted data output | |||||||
| 25 | Rx4p | Receiver non-inverted data output | |||||||
| 26 | GND | Ground | |||||||
| 27 | ModPrsL | Module present | |||||||
| 28 | IntL | Interrupt | |||||||
| 29 | VCC Tx | +3.3V power supply transmitter | |||||||
| 30 | VCC1 | +3.3V power Supply | |||||||
| 31 | LPMode | Low power mode | |||||||
| 32 | GND | Ground | |||||||
| 33 | Tx3p | Transmitter non-inverted data input | |||||||
| 34 | Tx3n | Transmitter inverted data input | |||||||
| 35 | GND | Ground | |||||||
| 36 | Txlp | Transmitter non-inverted dataInput | |||||||
| 37 | Tx1n | Transmitter inverted data input | |||||||
| 38 | GND | Ground | |||||||














































































Ann












